

Heavy Flavor & Quarkonia Measurements at sPHENIX

2020 RHIC/AGS Annual Users Meeting
October 22-23, 2020
Hideki Okawa (Fudan University)
for sPHENIX Collaboration

sPHENIX Mission

- A state-of-the-art jet detector; the first new detector at RHIC in >20 years.
- Completing the scientific mission of RHIC, as prioritized in DOE/NSF NSAC 2015 Nuclear Physics Long Range Plan.
- Complementarity in kinematics and medium property to LHC, also confirmed by ECFA WG5 (Heavy Ion group).
- Submitted Beam Use Proposal (BUP) on Aug. 31, 2020.
- sPHENIX as the highest priority for Runs 2023-2025 (PAC Report, Sep. 2020)

Core Physics Program

Talk by Christopher McGinn

Cold QCD

Vary temperature of QCD matter

This Talk

Talk by Desmond Shangase

Plenary talk by Caroline Riedl

4 pillar physics topics, making use of very high statistics of jets & open/hidden heavy flavors over unprecedented kinematic range

Schedule

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	z < 10 cm	z <10 cm
2023	Au+Au	200	24 (28)	9 (13)	3.7 (5.7) nb ⁻¹	4.5 (6.9) nb ⁻¹
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹
					4.5 (6.2) pb ⁻¹ [10%-str]	
2024	<i>p</i> ↑+Au	200	-	5	0.003 pb ⁻¹ [5 kHz]	0.11 pb ⁻¹
					0.01 pb ⁻¹ [10%-str]	
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb ⁻¹	21 (25) nb ⁻¹

- Scientific mission of sPHENIX can be achieved with 3 years of running.
- Consistent with the currently envisioned EIC schedule.
- If opportunity arises, additional runs can fully utilize the potential of the detector.

Run plan updated in BUP 2020

sPHENIX Detector

- High data rates: 15 kHz for all subdetectors
- 1.4 T Solenoid from BaBar
- Hermetic coverage: |η|<1.1
- Trigger capability also for pp with streaming readout
- High resolution vertexing with MVTX
- Large acceptance hadronic calorimetry for jets

→ brings first b-jet tagging at RHIC w/ MVTX!!

sPHENIX Tracking Detectors

Inner tracker:

- MVTX: Monolithic Active Pixel Sensors (3 layers)
 - Procurement copies of ALICE ITS IB staves integrated into sPHENIX
 - Precision vertexing
- INTT: strip pattern recognition, timing silicon sensors (2 layers)
- DCA($r\phi$ or z) resolution < 50 μ m for $p_T>1$ GeV/c

Outer tracker:

- TPC: 48 layers with gateless and continuous readout
 - Main tracking device; provide momentum measurement
- \rightarrow $\delta p/p < 2\%$ for $p_T < 10$ GeV/c

Impact of MVTX on Tracking

- Tracking efficiency above 90% at p_T>1 GeV/c. → promising to measure rare processes such as Y(nS) production.
- DCA pointing resolutions in rφ & z ~ 40µm at p_T=0.5-1 GeV/c. → crucial for open heavy-flavor programs.
- Momentum resolution < 2% for p_T < 10 GeV/c. → Important for Y(nS) separation;
 δM < 125 MeV required.

sPHENIX EMCAL & Electron ID

- Tungsten/scintillating-fiber SPACAL. Radiation length~7mm. Fits inside solenoid.
- Tower size $\Delta \eta \times \Delta \phi = 0.025 \times 0.025$. Resolution ~ 16%/ $\sqrt{E} \oplus 5\%$.
- Promising hadron (K/ π /p) rejection factor with E/p requirement.

Upsilon R_{AA}

- sPHENIX can reconstruct Upsilons with excellent mass resolution.
- Measuring centrality & p_T dependence of R_{AA} is critical to compare with LHC.
- Measuring Y(3S) modification will be challenging due to the large suppression. Feasibility checks ongoing for Y(3S) modification.

QGP with Open Heavy-Flavor Quarks

- Comprehensive coverage in p_T range:
 - p_T≤m_b: diffusion of HQ (diffusion coeff. D_s)
 - $m_b \lesssim p_T \lesssim 10$ GeV: differential sensitivity to collisional energy loss, good probe for hadronization.
 - p_T≥10 GeV: transition from collisional to radiative energy loss.
- sPHENIX brings precision measurements of b-quark sector to RHIC!

Streaming Readout & pp Program

- Streaming readout: triggerless configuration recording 10% of collisions.
 - → increases amount of Run-24 data by orders of magnitude
 - Commended by PAC 2020 for this effort.
- Crucial for open heavy ion programs:

 i.e. enables to measure HF meson
 R_{AA} instead of R_{CP} as well as other qualitatively novel measurements
- Also brings other exciting opportunities for spin-dependent QCD; e.g. D⁰ single spin asymmetry

B-meson Projections

- B mesons can be studied through their decay daughters (i.e. non-prompt D⁰).
- Non-prompt D⁰ suppression → collisional energy loss
- Determine b-quark flow → clean access to diffusion at RHIC

D⁰ v₁ measurement

 D^0 meson v_1 is sensitive to:

- 1. T-dependence of HQ diffusion coefficient
- 2. Geometrical tilt of QGP source
- 3. Initial magnetic field (from D^0/\overline{D}^0 v_1 difference)

1st observation of D⁰ v₁ by STAR sPHENIX will provide high precision measurements

Rapidity

Λ_c Hadronization

- $\Lambda_{\rm C}/{\rm D}^{\rm 0}$ significantly larger than the baseline Pythia calculation in pp, pA, AA. Important probe to understand the hadronization (coalescence model?).
- Charm baryons & charm-strange mesons give sizable contributions to the total charm xsec.
- sPHENIX will provide precision measurement at p_T~3-8 GeV.

b-jet Identification

- The high-p_T probe.
- RHIC has an advantage over LHC for having much less b-jets from gluon splitting (g→bb).
- Heavy flavor jets have distinct signatures with:
 - Tracks with large DCA
 - Presence of secondary vertex
 - Presence of displaced lepton
- Taggers making use of the first two features are investigated so far.

b-jet Identification

- Already compatible as CMS benchmark performance in Heavy Ion.
- Further studies ongoing to combine the two tagging schemes as well as making use of displaced leptons.

b-jet R_{AA} & v₂ Projection

- sPHENIX brings precise inclusive b-jet R_{AA} & v₂ measurements to RHIC.
- Strong constraints on the energy loss model.

b-jet Pairs

Kang, Reiten, Vitev, Yoon, Phys. Rev. D 99, 034006.

- Inclusive b-jets at RHIC are expected to originate from b-quarks (i.e. not from gluon splitting), but considering the correlation between two b-jets will further suppress those from the gluon splitting.
- Two ways to produce 1D integral of 2D di-jet distribution
 - Di-b-jet p_T balance: sensitive to geometry fluctuation (our previous studies in the backup)
 - Di-b-jet mass: enhance sensitivity to transport property

b-jet Pair Mass

Inclusive b-jet

- Covers 35-70 GeV/c² in di-b-jet invariant mass.
- Strong sensitivity to parton-QGP coupling.
- x2 effect against 10% variation on g_{med}!

b-jet Pair vs Light-jet Pair

- b-jet vs light-jet pair mass ratio has strong sensitivity to parton mass effect.
- Partial cancellation of experimental systematic uncertainties.
- 1-8 times enhancement on the mass effect against g_{med} variations by taking this ratio.
- Will continue to be in close contact w/ theory community & look for more observables/strategies.

b-jet vs light-jet

Summary

- sPHENIX brings precision measurements to b-quark sector at RHIC.
 - Upsilons to probe QGP with different size.
 - Comprehensively covers wide p_T range for open heavy flavor
 → diffusion properties, hadronization, parton energy loss (collisional vs radiative)
- Beam Use Proposal submitted with the updated run program.
- PAC lists sPHENIX as the highest priority for Runs 23-25.
- Despite the challenges from COVID-19, the construction is progressing, targeting the first data in 2023.

sPHENIX Collaboration

 More than 320 members from 80 institutions in 13 countries (as of early 2020)

Schedule

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	z < 10 cm	z <10 cm
2023	Au+Au	200	24 (28)	9 (13)	3.7 (5.7) nb ⁻¹	4.5 (6.9) nb ⁻¹
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹
					4.5 (6.2) pb ⁻¹ [10%-str]	
2024	p [↑] +Au	200	-	5	0.003 pb ⁻¹ [5 kHz]	0.11 pb ⁻¹
					0.01 pb ⁻¹ [10%-str]	
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb ⁻¹	21 (25) nb ⁻¹

Run 2026-2027, if opportunity arises

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
		[GeV]	Weeks	Weeks	z < 10 cm	z < 10 cm
2026	$p^{\uparrow}p^{\uparrow}$	200	28	15.5	1.0 pb ⁻¹ [10 kHz]	80 pb ⁻¹
					80 pb ⁻¹ [100%-str]	
_	O+O	200	-	2	18 nb ^{−1}	37 nb ^{−1}
					37 nb ⁻¹ [100%-str]	
_	Ar+Ar	200	-	2	6 nb ⁻¹	12 nb ^{−1}
					12 nb ⁻¹ [100%-str]	
2027	Au+Au	200	28	24.5	30 nb ⁻¹ [100%-str/DeMux]	30 nb ⁻¹

Run plan updated in BUP 2020

Complementarity of RHIC & LHC

Tracking Performance

DCA Resolution

Streaming Readout

The streaming data are recorded all the time, and broken up in chunks above threshold

Streaming Readout

b-jet Correlation - Early Studies

Table 4.1: Analysis cut information for di-b-jet study.

	p+p	Au+Au		
		z < 0.7		
	$p_{T,1} > 20 { m GeV}/c$			
cuts	$p_{T,2} > 10 \text{GeV}/c$			
	$ \Delta\phi_{12} $	$ > 2\pi/3$		
	z	< 10 cm		
<i>b</i> -jet Eff	60%	40%		
<i>b</i> -jet Purity	40%	40%		
b -jet R_{AA}		0.6		

- Inclusive b-jets at RHIC are expected to originate from b-quarks (i.e. not from gluon splitting), but considering the correlation between two b-jets will further suppress those from the gluon splitting.
- Previous studies with truth. Studies to be updated & expanded with full simulation.